Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yun Li, ${ }^{\text {a }}$ Anwar Usman, ${ }^{\text {b }}$
Ibrahim Abdul Razak, ${ }^{\text {b }}$
Hoong-Kun Fun, ${ }^{\text {b }}$ * Suchada Chantrapromma, ${ }^{\text {b }}+$ Yan Zhang ${ }^{\text {a }}$ and Jian-Hua $\mathrm{Xu}^{\mathbf{a}}$

${ }^{\text {a }}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b } X \text {-ray Crystallography Unit, School of }}$ Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

+ Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.069$
$w R$ factor $=0.172$
Data-to-parameter ratio $=18.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

6,6-Dimethyl-2-phenyl-4,5,6,7-tetrahydro-benzofuran-4-one

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$, the tetrahydrobenzene ring adopts a half-chair conformation. The phenyl substituent is almost coplanar with the furan ring.

Received 1 August 2002
Accepted 6 August 2002
Online 16 August 2002

Comment

The strong, one-electron oxidant ceric ammonium nitrate (CAN) has been established as an efficient reagent in generating α-carbonylalkyl radicals from enolizable ketones and the addition of these carbon-centered radicals to alkenes has been successfully used in organic synthesis in various $\mathrm{C}-\mathrm{C}$ bondformation reactions (Nair et al., 1997). We have recently investigated CAN-mediated reactions of 1,3-dicarbonyl compounds with phenylacetylene ($\mathrm{Li} \& \mathrm{Xu}, 2002$), and we report here the crystal structure of the title compound, (I), which is one of the products in the reaction of 5,5-dimethyl-cyclohexa-1,3-dione with phenylacetylene.

(I)

The bond lengths and angles in (I) (Fig. 1 and Table 1) are within normal ranges (Allen et al., 1987). In the tetrahydrobenzofuran moiety ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 8$), the furan ring is planar, while the tetrahydrobenzene ring is not planar and adopts a halfchair conformation. Atoms C3 and C4 are displaced by -0.536 (2) and 0.166 (2) \AA, respectively, from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 5 /$ C6 plane. This conformation is also confirmed by its puckering parameters $\left[Q_{2}=0.377(2) \AA, Q_{3}=-0.283(2) \AA, Q_{T}=\right.$ 0.471 (2) $\AA, \varphi=46.5$ (3) $)^{\circ}$ and $\theta=53.1$ (2) ${ }^{\circ}$; Cremer \& Pople, 1975]. The two ring planes are nearly coplanar, corresponding to a dihedral angle of $7.7(1)^{\circ}$. The attached ketone atom O 2 deviates by 0.231 (1) \AA from the tetrahydrobenzene ring plane, and the configurations of the two methyl groups, C15 and C 16 , are conditioned by the $s p^{3}$ state of the C 3 atom, with the average angle subtended at the C 3 atom being 109.5°.

The C9-C14 phenyl ring and the furan ring are almost coplanar, with a dihedral angle of $7.0(1)^{\circ}$. This enhances the π-conjugation interactions between the two rings and slightly shortens the C8-C 9 bond length $\left[1.460(2) \AA, c f . \mathrm{Csp}^{2}-\mathrm{C}_{\mathrm{ar}}\right.$ 1.470 (Allen et al., 1987)].

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.

Experimental

The title compound, (I), was isolated from the reaction of 5,5-di-methylcyclohexa-1,3-dione with ceric ammonium nitrate (CAN) in the presence of an excess amount of phenylacetylene in acetonitrile, by column chromatography on silica gel. Single crystals of (I), suitable for X-ray crystallographic measurements, were prepared by slow evaporation of the solvent from a petroleum ether-ethyl acetate solution (4:1 v / v).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \\
& M_{r}=240.29 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=5.9261(3) \AA \\
& b=11.1029(6) \AA \\
& c=19.6978(11) \AA \\
& \beta=95.521(1)^{\circ} \\
& V=1290.0(1) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.237 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5717 \\
& \quad \text { reflections } \\
& \theta=2.8-28.3^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=213(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.44 \times 0.38 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
7600 measured reflections
3123 independent reflections 2228 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.172$
$S=0.94$
3123 reflections
166 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0884 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X T L \\
& \text { Extinction coefficient: } 0.073(8)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.480(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.512(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.546(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.461(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.545(2)$		
$\mathrm{C} 16-\mathrm{C} 3-\mathrm{C} 15$	$108.99(14)$	$\mathrm{C} 16-\mathrm{C} 3-\mathrm{C} 2$	$109.58(13)$
$\mathrm{C} 16-\mathrm{C} 3-\mathrm{C} 4$	$109.32(14)$	$\mathrm{C} 15-\mathrm{C} 3-\mathrm{C} 2$	$110.19(14)$
$\mathrm{C} 15-\mathrm{C} 3-\mathrm{C} 4$	$109.61(13)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$109.14(13)$

The H atoms were positioned geometrically and were treated as riding atoms on the parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances $=0.93-$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and $S A D A B S$ (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/ PFIZIK/610961. AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
$\mathrm{Li}, \mathrm{Y} . \& \mathrm{Xu}, \mathrm{J} .-\mathrm{H} .(2002)$. In preparation.
Nair, V., Mathew, J. \& Prabhakaran, N. (1997). J. Chem. Soc. Rev. 26, 127-132. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

