organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun Li,^a Anwar Usman,^b Ibrahim Abdul Razak,^b Hoong-Kun Fun,^b* Suchada Chantrapromma,^b† Yan Zhang^a and Jian-Hua Xu^a

^aDepartment of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

+ Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 213 K Mean σ (C–C) = 0.002 Å R factor = 0.069 wR factor = 0.172 Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

6,6-Dimethyl-2-phenyl-4,5,6,7-tetrahydrobenzofuran-4-one

In the title compound, $C_{16}H_{16}O_2$, the tetrahydrobenzene ring adopts a half-chair conformation. The phenyl substituent is almost coplanar with the furan ring.

Received 1 August 2002 Accepted 6 August 2002 Online 16 August 2002

Comment

The strong, one-electron oxidant ceric ammonium nitrate (CAN) has been established as an efficient reagent in generating α -carbonylalkyl radicals from enolizable ketones and the addition of these carbon-centered radicals to alkenes has been successfully used in organic synthesis in various C–C bondformation reactions (Nair *et al.*, 1997). We have recently investigated CAN-mediated reactions of 1,3-dicarbonyl compounds with phenylacetylene (Li & Xu, 2002), and we report here the crystal structure of the title compound, (I), which is one of the products in the reaction of 5,5-dimethylcyclohexa-1,3-dione with phenylacetylene.

The bond lengths and angles in (I) (Fig. 1 and Table 1) are within normal ranges (Allen *et al.*, 1987). In the tetrahydrobenzofuran moiety (O1/C1–C8), the furan ring is planar, while the tetrahydrobenzene ring is not planar and adopts a halfchair conformation. Atoms C3 and C4 are displaced by -0.536 (2) and 0.166 (2) Å, respectively, from the C1/C2/C5/ C6 plane. This conformation is also confirmed by its puckering parameters [$Q_2 = 0.377$ (2) Å, $Q_3 = -0.283$ (2) Å, $Q_T =$ 0.471 (2) Å, $\varphi = 46.5$ (3)° and $\theta = 53.1$ (2)°; Cremer & Pople, 1975]. The two ring planes are nearly coplanar, corresponding to a dihedral angle of 7.7 (1)°. The attached ketone atom O2 deviates by 0.231 (1) Å from the tetrahydrobenzene ring plane, and the configurations of the two methyl groups, C15 and C16, are conditioned by the sp^3 state of the C3 atom, with the average angle subtended at the C3 atom being 109.5°.

The C9–C14 phenyl ring and the furan ring are almost coplanar, with a dihedral angle of 7.0 (1)°. This enhances the π -conjugation interactions between the two rings and slightly shortens the C8–C9 bond length [1.460 (2) Å, *cf.* Csp^2-C_{ar} 1.470 (Allen *et al.*, 1987)].

Figure 1

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Experimental

The title compound, (I), was isolated from the reaction of 5,5-dimethylcyclohexa-1,3-dione with ceric ammonium nitrate (CAN) in the presence of an excess amount of phenylacetylene in acetonitrile, by column chromatography on silica gel. Single crystals of (I), suitable for X-ray crystallographic measurements, were prepared by slow evaporation of the solvent from a petroleum ether-ethyl acetate solution (4:1 v/v).

Crystal data

C ₁₆ H ₁₆ O ₂	$D_x = 1.237 \text{ Mg m}^{-3}$
$M_r = 240.29$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from
a = 5.9261 (3) Å	reflections
b = 11.1029 (6) Å	$\theta = 2.8-28.3^{\circ}$
c = 19.6978 (11) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 95.521 \ (1)^{\circ}$	T = 213 (2) K
V = 1290.0 (1) Å ³	Block, colorless
Z = 4	$0.44 \times 0.38 \times 0.28 \text{ mm}$
Data collection	
Siemens SMART CCD area-	$R_{\rm int} = 0.093$
detector diffractometer	$\theta_{\rm max} = 28.3^{\circ}$

 ω scans 7600 measured reflections 3123 independent reflections 2228 reflections with $I > 2\sigma(I)$ 5717

	$R_{int} = 0.093$
($\theta_{\rm max} = 28.3^{\circ}$
1	$h = -7 \rightarrow 7$
	$k = -14 \rightarrow 14$
i	$l = -18 \rightarrow 26$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0884P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.069$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.172$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.94	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
3123 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
166 parameters	Extinction correction: SHELXTL
H-atom parameters constrained	Extinction coefficient: 0.073 (8)

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.480 (2)	C4-C5	1.512 (2)
C2-C3	1.546 (2)	C5-C6	1.461 (2)
C3-C4	1.545 (2)		
C16-C3-C15	108.99 (14)	C16-C3-C2	109.58 (13)
C16-C3-C4	109.32 (14)	C15-C3-C2	110.19 (14)
C15-C3-C4	109.61 (13)	C4-C3-C2	109.14 (13)

The H atoms were positioned geometrically and were treated as riding atoms on the parent C atoms, with C-H distances = 0.93-0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/ PFIZIK/610961. AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Li, Y. & Xu, J.-H. (2002). In preparation.

Nair, V., Mathew, J. & Prabhakaran, N. (1997). J. Chem. Soc. Rev. 26, 127-132. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.